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The problem is considered of approximating continuous functions in the uniform
norm by rational functions whose denominators are bounded from above and
below. A general theory of strong uniqueness is presented. � 1997 Academic Press

1. INTRODUCTION

Let X be a compact Hausdorff space and C(X ) the space of real
continuous functions on X. For f # C(X ), define

& f &=max
x # X

[ | f (x)| : x # X].

Let [,1 , ..., ,n] and [�1 , ..., �m] be two linearly independent subsets of
C(X ), and define

P=span[,1 , ..., ,n]

Q=span[�1 , ..., �m]

R=[ p�q : p # P, q # Q, q(x)>0: \x # X],

R+, &=[ p�q # R : +(x)�q(x)�&(x) : \x # X],

where +, & are two given elements of C(X ) with 0<+(x)<&(x) for all
x # X. We will assume that R+, & is non-empty.
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Definition 1. For f # C(X), rf= pf�qf # R+, & is called a best approximation
to f from R+, & if

& f&rf &=d( f, R+, &)= inf
r # R +, &

& f&r&.

The set of all best approximations to f from R+, & is denoted by PR +, &( f ).

Definition 2. If rf # R+, & , and if there exists c>0 such that for any
r # R+, &

& f&r&�& f&rf &+c &r&rf &, (1.1)

then rf is said to be a strongly unique best approximation to f from R+, &

or equivalently rf is strongly unique.

The problem of approximating f # C(X ) from R+, & was apparently first
studied by Dunham [3]. The study was motivated by the desire to improve
some unsatisfactory features of approximation from R, normally associated
with denominators going to zero at points in X. It is not sufficient simply
to provide a lower bound on q, because of the possibility of multiplying
both numerator and denominator by an arbitrary constant. Topological
properties were established in [3], and some characterization results (of
Kolmogorov type) were given. The more difficult question of uniqueness
was also addressed, and in particular it was shown that uniqueness is only
possible if m�2. Other studies concerned with characterization and
uniqueness of constrained rational approximation have involved different
approximating sets (for example [4, 5]), and further results concerning, for
example, strong uniqueness for R+, & have not, so far, been available. The
intention of this paper is to present a general theory of strong uniqueness
for best approximation to f from R+, & . In particular, several sufficient
conditions are given such that the best approximation is strongly unique:
some questions raised in [3] are therefore answered. The work can also be
interpreted as generalising results of Nurnberger [7].

2. STRONG UNIQUENESS

It is necessary to introduce some more notation. For f # C(X ), rf=
pf �qf # R+, & , let

X0=[x # X : | f (x)&rf (x)|=& f&rf &],

X+=[x # X : qf (x)=+(x)],

X&=[x # X : qf (x)=&(x)],
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and let

_(x)=sign( f&rf)(x)={
0, ( f&rf )(x)=0

( f&rf)(x)
|( f&rf)(x)|

, ( f&rf)(x){0.

We will now define a uniqueness element of a set and give a known
characterization result which is required later.

Definition 3 [6]. For a subset G/C(X ), g # G is called a uniqueness
element of G if for any f # C(X ), g # PG( f ) implies that g is a unique best
approximation to f from G.

Lemma 1 [6, Theorem 3]. The following statements are equivalent.

(1) r* # R+, & is a uniqueness element of R+, & .

(2) For any f # C(X )"R+, & ,

r* # PR+, &( f ) if and only if max
x # X0

_(x)(r*&r)(x)>0 \r # R+, &"[r*].

Theorem 1. Let f # C(X )"R+, & , and rf # R+, & . Then, rf is a strongly
unique best approximation to f from R+, & if and only if there exists c>0 such
that for any r # R+, &

max
x # X0

_(x)(rf&r)(x)�c &rf&r&. (2.1)

Proof. Since for any r # R+, &

& f&r&&& f&rf &�max
x # X0

_(x)(rf&r)(x), (2.3)

then (2.1) is clearly sufficient.
Now assume that rf is a strongly unique best approximation to f from

R+, & . Let r= p�q # R+, & be arbitrary, r{rf . For t>0, define

rt=
(1&t) pf+tp
(1&t) qf+tq

.

For any t>0, let xt # X be such that

& f&rt &=| f (xt)&rt(xt)|. (2.2)
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Since &rt&rf & � 0 as t � 0+, without loss of generality we may assume
that xt � x0 # X0 , and for t>0 sufficiently small

sign( f&rt)(xt)=_(x0).

Now for t>0 sufficiently small

& f&rt&&& f&rf&�|( f&rt)(xt)|&|( f&rf)(xt)|

=_(x0)(rf&rt)(xt)

=_(x0) t
q(xt)

(1&t) qf (xt)+tq(xt)
(rf&r)(xt).

Therefore

& f&rt &&& f&rf &
t

�_(x0)
q(xt)

(1&t) qf (xt)+tq(xt)
(rf&r)(xt)

�max
x # X 0

_(x)
q(xt)

(1&t) qf (xt)+tq(xt)
(rf&r)(xt). (2.3)

Also, for any x # X0 ,

& f&rt &&& f&rf &�|( f&rt)(x)|&|( f&rf)(x)|

�_(x)( f&rt)(x)&_(x)( f&rf)(x)

=_(x)(rf&rt)(x)

=_(x) t
q(x)

(1&t) qf (x)+tq(x)
(rf&r)(x).

Therefore, for all x # X0 ,

& f&rt &&& f&rf &
t

�_(x)
q(x)

(1&t) qf (x)+tq(x)
(rf&r)(x). (2.4)

Let t � 0+. Then from (2.3) and (2.4), it follows that

lim
t � 0+

& f&rt&&& f&rf&
t

=max
x # X0

_(x)
q(x)
qf (x)

(rf&r)(x). (2.5)

Define

{( f, rf , r)= lim
t � 0+

& f&rt&&& f&rf&
t

. (2.6)
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Then

{( f, rf , r)� lim
t � 0+

c &rt&rf &
t

,

using (1.1),

=c "pqf& pf q
q2

f "
�c min

x # X }
q(x)
qf (x)} &r&rf &

�c min
x # X

+(x)
&(x)

&r&rf&.

Therefore, there exists c$>0 such that for any r # R+, &

{( f, rf , r)�c$ &r&rf&. (2.7)

Since rf # PR+, &( f ),

max
x # X0

_(x)(rf&r)(x)�0 \r # R+, & .

Further, for all r # R+, & ,

max
x # X0

_(x)(rf&r)(x)�min
x # X0

qf (x)
q(x)

max
x # X0

q(x)
qf (x)

_(x)(rf&r)(x)

=min
x # X0

qf (x)
q(x)

{( f, rf , r)

�c$ min
x # X0

+(x)
&(x)

&r&rf &, (2.8)

using (2.5), (2.6) and (2.7). This establishes (2.1) and the proof is complete.
K

We now introduce some further notation which is needed for what
follows. Firstly, for any x # X, define

ĝ(x)=(,1(x), ..., ,n(x), rf (x) �1(x), ..., rf (x) �m(x)) # Rm+n,

h� (x)=(0, ..., 0, �1(x), ..., �m(x)) # Rm+n.
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Then, we can define the sets

S1 =[_(x) ĝ(x) : x # X0],

S2=[&h� (x) : x # X+],

S3=[h� (x) : x # X&],

with

S=S1 _ S2 _ S3 .

For any rf # R+, & , let

Grf =P+rf Q=[ p+rf q : p # P, q # Q],

G*r f =[ p+rf q # Grf : q(x)�0, \x # X+ ; q(x)�0, \x # X&].

Definition 4. R+, & satisfies the Interior Condition if there exists q0 # Q
such that +(x)<q0(x)<&(x) for all x # X.

Remark. This condition is effectively a constraint qualification analogous
to the Slater constraint qualification in nonlinear programming.

Theorem 2. Suppose that

max
x # X0

_(x) g(x)>0 \g # G*rf"[0], (2.9)

where the bar denotes closure of the set. Then rf= pf�gf is a strongly
unique best approximation to f from R+, & . If the Interior Condition holds,
then (2.9) is also a necessary condition for rf to be a strongly unique best
approximation.

Proof. Suppose that (2.9) holds for some rf # R+, & . Since G*rf is a finite
dimensional closed convex cone, the set

{ g
&g&

: g # G*r f , g{0=
is a compact subset of G*r f . It follows from (2.9) that there exists c>0 such
that

max
x # X0

_(x) g(x)�c &g& \g # G*r f . (2.10)

Since for any r= p�q # R+, &

_(x)(rf&r)(x)=
1

q(x)
_(x)( pf& p+rf (q&qf))(x),
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consequently

q(x) _(x)(rf&r)(x)=_(x)( pf& p+rf (q&qf))(x).

Thus using (2.10),

max
x # X0

q(x) _(x)(rf&r)(x)=max
x # X 0

_(x)( pf& p+rf (q&qf))(x)

�c &pf& p+rf (q&qf)&

�cmin
x # X 0

q(x) &rf&r&.

Further

max
x # X 0

_(x)(rf&r)(x)� min
x # X0

1
q(x)

max
x # X0

_(x) q(x)(rf&r)(x)

�c min
x # X 0

q(x) min
x # X0

1
q(x)

&rf&r&

�c min
x # X 0

+(x) min
x # X0

1
&(x)

&rf&r&.

It follows from Theorem 1 that rf is a strongly unique best approximation
to f from R+, & .

Now let the Interior Condition hold. Also, assume that rf # R+, & is a
strongly unique best approximation, but there exists g # G*r f , g{0 such that

max
x # X 0

_(x)
g(x)
&g&

=0.

Let gn= pn+rf qn # G*r f , with &gn& g& � 0 as n � �, and let

g*
n= pn+rf (qn+*(q0&qf)),

where q0 # Q with +(x)<q0(x)<&(x) for any x # X, which exists by
assumption. Since g*

n � g uniformly as * � 0+ and n � �, then for any
=>0 there exists *=>0 and integer N=>0 such that for any 0<*�*= ,
n�N= ,

max
x # X 0

_(x)
g*

n(x)
&g*

n&
�=. (2.11)
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Let

q*
n =qn+*(q0&qf), *>0,

rt
n=

pf&tpn

qf+tq*
n

, t>0.

Then, for any *>0, and any n, there exists t*
n>0 such that for any

0<t�t*
n , rt

n # R+, & . In fact, since X+ is compact and q*
n(x)>0 for any

x # X+ , there exists an open subset W+ /X, with X+ /W+ such that

q*
n(x)>0 for any x # W+ .

Thus, K+=X"W+ is compact and K+ & X+=,. Obviously, for any x # W+ ,
t>0,

(qf+tq*
n)(x)�qf (x)�+(x).

Now define

:=min[qf (x)&+(x) : x # K+].

Then :>0. Let

t̂*
n=:�max[1, &q*

n &].

Then for any 0<t� t̂ *
n , x # K+ ,

qf (x)+tq*
n(x)�qf (x)&t |q*

n(x)|

�qf (x)&: |q*
n(x)|�max[1, &q*

n&]

�qf (x)&:

�+(x).

Thus, when 0<t� t̂ *
n ,

(qf+tq*
n)(x)�+(x) \x # X.

By a similar argument, for any *>0, and n, there exists t~ *n>0 such that for
0<t�t~ *n

(qf+tq*
n)(x)�&(x) \x # X.

Thus, we have proved that for any *>0 and n, there exists t*
n>0 such that

for any 0<t�t*
n , rt

n # R+, & .
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Now, for any x # X0 , 0<*<*= , n>N= , and 0<t�t*
n ,

_(x)(rf&rt
n)(x)

&rf&rt
n&

=
_(x)(rf q*

n+ p)(x)

(qf+tq*
n)(x) "rf q*

n+ p
qf+tq*

n "
�=

&rf q*
n+ p&

(qf+tq*
n)(x)<"

rf q*
n+ p

qf+tq*
n " since g*

n=rf q*
n+ pn ,

�={ 1
+(x)=<min } 1

(qf+tq*
n)(x) }

�= max
x # X

&(x)�min
x # X

+(x).

Let = � 0+. Then this gives a contradiction using Theorem 1 and the
proof is complete. K

Remark. The usefulness of this result is obviously enhanced if G*r f is
closed. This will be a consequence of a unique representation of an element
of G*r f , in other words if g= p+rfq # G*rf with g=0 implies that p=0 and
q=0.

Corollary 1. If

0 # IntCo(S),

where IntCo(S) denotes the interior of the convex hull of the set S, then rf

is a strongly unique best approximation to f from R+, & .

Proof. Let 0 # IntCo(S). Let g= p+rf q # G*r f be such that

max
x # X 0

_(x) g(x)�0. (2.12)

Let

p=a1,1+ } } } +an,n ,

q=b1�1+ } } } +bm�m ,

and let

z=(a1 , ..., an , b1 , ..., bm)T # Rm+n.

Then (2.12) together with the definition of G*rf imply that

(z, s)�0 \s # S,
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using a standard inner product notation. Since 0 # IntCo(S), for $>0 suf-
ficiently small, it follows that

$z # Co(S).

Using Caratheodory's Theorem, for some k�m+n+1, there exist
s1 , ..., sk # S, *1�0, ..., *k�0 with �k

i=1 *i=1 such that

$z= :
k

i=1

*isi .

Thus

0�$(z, z) =(z, $z) = :
k

i=1

*i(z, si)�0.

This implies that z=0. Thus if g= p+rf q # G*r f , with g=0, it follows that
p=0 and q=0. Thus from the above Remark, G*r f is closed. Thus (2.9) is
satisfied, and the result follows from Theorem 2. K

For subsequent results, we require the following characterization theorem.

Theorem 3. Suppose that the Interior Condition holds. For any f #
C(X )"R+, & , rf # PR + , &( f ) if and only if there exist x1 , ..., xk1

# X0 , :1>0, ...,
:k 1

>0, y1 , ..., yl # X+ , yl+1 } } } yk2
# X& , ;1>0, ..., ;k 2

>0 with k1+k2

�m+n+1, such that

:
k1

i=1

:i_(xi) p(xi)=0 \p # P, (2.13)

:
k1

i=1

:i _(xi) rf (xi) q(xi)= :
l

i=1

;iq( yi)& :
k2

i=l+1

;iq( yi) \q # Q. (2.14)

Proof. Clearly, there exist x1 , ..., xk 1
# X0 , y1 , ..., yl # X+ , yl+1 , ..., yk 2

#
X& , :1>0, ..., :k 1

>0, ;1>0, ..., ;k 2
>0 such that (2.13) and (2.14) hold if

and only if

0 # Co(S). (2.15)

Using a standard separation result (for example [2], p. 19), (2.15) is
equivalent to the non-existence of any p # P, q # Q such that

(1) _(x)( p+rf q)(x)<0 \x # X0 , (2.16)

(2) q(x)>0 \x # X+ ; q(x)<0, \x # X& . (2.17)
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Thus, it is sufficient to prove that rf # PR + , &( f ) if and only if there is no
p # P, q # Q such that (2.16) and (2.17) hold.

First, suppose that there exist p # P, q # Q such that (2.16) and (2.17)
hold. Then arguing as in the proof of Theorem 2, for *>0 sufficiently
small, r*=( pf&*p)�(qf+*q) # R+, & . But

_(x)(rf&r*)(x)=*
_(x)( p+rf q)

qf+*q
<0 \x # X0

which implies (see [3]) that rf � P R + , &( f ). Thus (2.13) and (2.14) are
necessary.

Next suppose that (2.13) and (2.14) hold, so that (2.16) and (2.17) do
not hold for any p # P, q # Q. Then if rf � PR + , &( f ) it follows from [3] that
there exists r1= p1 �q1 # R&, + such that

_(x)(rf&r1)(x)<0 \x # X0 . (2.18)

Let

p= pf& p1 , q=q1&qf+'(q0&qf)

where

0<'< inf
x # X 0

|r1(x)&rf (x)|<"rf (qf&q0)
q1 " and q0 # Q

with +(x)<q0(x)<&(x) for all x # X. Then, p # P, q # Q satisfy (2.16) and
(2.17). This is a contradiction which establishes the sufficiency of (2.13) and
(2.14) and completes the proof. K

Corollary 2. Suppose that the Interior Condition holds. If rf # PR + , &( f )
and 0 is a uniqueness element of G*rf then rf is strongly unique.

Proof. Let the Interior Condition hold, let rf # PR + , &( f ) and let 0 be a
uniqueness element of G*r f . Then by Theorem 3 there exists x1 , ..., xk 1

# X0 ,
y1 , ..., yl # X+ , yl+1 , ..., yk 2

# X& , :1>0, ..., :k 1
>0, ;1>0, ..., ;k2

>0 such
that (2.13) and (2.14) hold. Thus, for any g= p+rf q # G*r f , since q(x)�0,
for all x # X+ , q(x)�0, for all x # X& , we have

:
k 1

i=1

:i_(xi) g(xi)= :
l

i=1

;iq( yi)& :
k 2

i=l+1

;i q( yi)�0.

Hence

max
x # X 0

_(x) g(x)�0 \g # G*r f .
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It follows from the convexity of G*rf that 0 is a best approximation to f&rf

from G*r f . The result follows from Lemma 1 and Theorem 2. K

Lemma 2. Assume that the Interior Condition holds. Let rf # PR + , &( f ),
so that by Theorem 3 (2.13) and (2.14) are satisfied. Let g= p+rf q # G*r f

with

max
x # X 0

_(x) g(x)�0. (2.19)

Then

g(xi)=0, i=1, 2, ..., k1 ,

q( yi)=0, i=1, 2, ..., k2 .

Proof. Using Theorem 3, (2.19) implies that

0� :
k 1

i=1

:i_(xi)( p+rf q)(xi)

= :
k 1

i=1

:i_(xi) p(xi)+ :
k 1

i=1

:i_(xi) rf (xi) q(xi)

= :
l

i=1

;iq( yi)& :
k2

i=l+1

;iq( yi).

Since q( yi)�0, i=1, 2, ..., l, q( yi)�0, i=l+1, ..., k2 , it follows that

q( yi)=0 i=1, 2, ..., k2 .

It is an immediate consequence of this that

g(xi)=0, i=1, 2, ..., k1 ,

and the result is proved. K

This result is useful in a number of ways. In particular, it enables us to
give some conditions under which the set G*r f is closed.

Theorem 4. Let the Interior Condition hold, and let P=6n&1 , Q=6m&1 ,
where 6k is the space of polynomials with degree �k. For given f, let
rf # PR + , &( f ), rf � PR ( f ), with rf irreducible. Then if min[m&�qf ,
n&�pf]�1 (where � is used to denote the actual degree of the polynomial ),
G*r f is closed.
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Proof. Let the stated assumptions hold, and let g= p+rf q # G*r f with
g=0. Obviously (2.19) holds, so that in particular, by the proof of
Lemma 2,

:
l

i=1

;iq( yi)& :
k2

i=l+1

;iq( yi)=0, i=1, 2, ..., k2 , (2.20)

where k2 and Y0=[ y1 , ..., yk2
] are given by Theorem 3. Now since

p+qpf �qf=0, any zeros of q are also zeros of p, and the zeros of p must
include those of pf . Thus there must exist a polynomial c such that

p=cpf , q=&cqf

where

�c�min[m&�qf , n&�pf]�1.

If k2�1, then it follows from Theorem 3 that we must have rf # PR 0
( f )

where

R0=[r # R : +(x)�q(x) : \x # X] or R0=[r # R : q(x)�&(x) : \x # X].

Therefore rf # PR ( f ) on appropriate scaling, which is a contradiction. Thus
Y0 & X+ {, and Y0 & X& {,, k2�2, and since (2.20) implies that
c( yi)=0, i=1, 2, ..., k2 , it follows that c=0, so that p=q=0. Thus G*r f is
closed. K

Theorem 5. Let the Interior Condition hold, and P and Q be Haar
subspaces. For given f, let rf # PR + , &( f ), rf � PR ( f ). Then if min[m, n]�2,
G*r f is closed.

Proof. Let the stated assumptions hold, and let g= p+rf q # G*r f with
g=0. As in the proof of Theorem 4, Y0 contains at least 2 points. But
q( yi)=0 implies that p( yi)=0, i=1, 2, ..., k2 , and so p=q=0 by the
condition on the dimensions. The result follows. K

We now present some further conditions which lead to strong uniqueness.

Theorem 6. Assume that the Interior Condition holds. Let rf # PR + , &( f ),
and let Y0=[ y1 , ..., yk 2

]/X+ _ X& , ;i , i=1, ..., k2 be given by Theorem 3.
Write

G0
r f

={p+rf q # Grf : :
l

i=1

;iq( yi)& :
k 2

i=l+1

;iq( yi)=0= .

If 0 is a uniqueness element of G0
r f

, then rf is strongly unique.
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Proof. Let rf # P R + , & . Assuming that the interior condition holds, let
g= p+rf q # G*r f , with

max
x # X 0

_(x) g(x)�0. (2.21)

Then, by Lemma 2,

q( yi)=0 i=1, 2, ..., k2 ,

and so g # G0
r f

. It follows that if 0 is a uniqueness element of G0
r f

, then (2.9)
must hold. By Theorem 2, rf is strongly unique. K

Theorem 7. Assume that the Interior Condition holds. Let rf # PR + , &( f ),
and let Y0=[ y1 , ..., yk 2

]/X+ _ X& , ;i , i=1, ..., k2 be given by Theorem 3.
Write

G� rf=[ p+rf q # Grf : q( yi)=0: i=1, 2, ..., k2]. (2.22)

(a) If G*r f is closed and 0 is a uniqueness element of G� r f , then rf is
strongly unique.

(b) If P is a Haar subspace and also G� r f is a Haar subspace of
dimension �n+1, then rf is strongly unique.

Proof. The proof of (a) is similar to that of Theorem 6. Consider (b).
Let g= p+rf q # G*r f such that (2.19) holds. Lemma 2 shows that g # G� rf .
Then using Theorem 3, since P is Haar, (2.13) implies that k1�n+1. It
follows from Lemma 2 that g=0. Thus (2.9) must hold, and by Theorem 2,
rf is strongly unique. K

Corollary 3. Assume that the Interior Condition holds, and let P be a
Haar subspace. Let rf # PR + , &( f ), and let Grf be a Haar subspace of C(X ).
If one of the following two conditions holds then rf is strongly unique.

(1) d( f, R+, &)=d( f, R),

(2) either X+ or X& is empty.

Proof. Since (1) is implied by (2), we only need to prove the result in
the case that d( f, R+, &)=d( f, R). Suppose, therefore, that this is true.

Take +$, &$ # C(X ) with 0<+$(x)<+(x)<&(x)<&$(x) for all x # X. Then
rf # PR+$, &$

( f ) and X+$=X&$=,. Hence, with +, & replaced by +$, &$, we have

G� rf=Grf ,

and so G� rf is a Haar subspace of C(X ). Thus 0 # G� rf is a uniqueness element
of G� rf . The result follows from Theorem 7. K
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Note that Corollary 3 is not true for non-restricted rational approxima-
tion. For example if P and Q are spaces of polynomials, then the best
approximation is strongly unique if and only if it is normal (Barrar and
Loeb [1]).

Corollary 4. Suppose that P and Q are both Haar subspaces of C(X ).
Let rf # PR+, &( f ). If m�2, then rf is strongly unique.

Proof. Note that the Interior Condition holds since Q is a Haar sub-
space of dimension 2. It follows that Theorem 3 can be used. If condition
(1) of Corollary 3 holds, the result is immediate, so assume that
d( f, R+, &)>d( f, R). Let Y0=[ y1 , ..., yk2

] be given by Theorem 3. Then as
in the proof of Theorem 4, Y0 & X+ {, and Y0 & X& {, which implies
that Y0 contains at least two points. Thus, G� rf=P, so G� rf is a Haar sub-
space of C(X ) of dimension n. The result then follows from Theorem 7. K

Now let X=[a, b], P=6n&1 , Q=6m&1. Then we have the following
result, which gives an affirmative answer to a question raised in [3].

Corollary 5. Let rf # PR+, &( f ). If any one of the following three
conditions holds, then rf is strongly unique.

(1) d( f, R+, &)=d( f, R),

(2) X+=, or X&=,,

(3) m�2.

Theorem 8. Let rf # PR+, &( f ). Let any of the following conditions hold:

(1) 0 is a unique best approximation to f&rf from G*rf .

(2) The Interior Condition holds and 0 is a unique best approximation
to f&rf from G0

rf
.

(3) The Interior Condition holds, 0 is a unique best approximation to
f&rf from G� rf , and G*rf is closed.

Then there exists [ fn]/C(X ) such that & fn& f & � 0 and rf is a strongly
unique best approximation to fn from R+, & .

Proof. This is similar to the proof of Theorem 2.1 of Smarzewski [8].
K

It is an open question whether or not rf # PR+, &( f ) is a unique
approximation to f implies that there exists [ fn]/C(X ) such that
& fn& f & � 0 and rf is a strongly unique best approximation to fn .

The question also arises: is it possible to characterize uniqueness
elements of R+, & in terms of strong uniqueness? We conclude with two
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examples which show that these properties are not implied by each other.
The following lemma is useful.

Lemma 3. Let X=[a, b], P=6n&1, Q=62 , +, & # C 1[a, b]. Then if
rf= pf�qf # R+, & with X+ /(a, b) or X+ /(a, b), then rf is a uniqueness
element of R+, & .

Proof. Let rf= pf�qf , r1= p1 �q1 # PR+, &( f ). Then

r0=
1�2( p1+ pf)
1�2(q1+qf)

# P R+, &( f ).

Assume that 1�2(q1+qf)(x)=+(x) for some x # X and 1�2(q1+qf)( y)=
&( y) for some y # X. Then q1(x)=qf (x), q1( y)=qf ( y), and x # X+ , y # X& .
By the assumptions,

q$1(x)=q$f (x) or q$1( y)=q$f ( y).

Thus q1=qf .
Now since rf # PR+, &( f ), we must have

max
x # X0

_(x)
pf (x)& p(x)

qf
�0, for all p # 6n .

It follows that

max
x # X0

_(x)( pf (x)& p(x))>0 for all p # 6n"[ pf],

and so p1= pf . The result is proved. K

Example 1. Let X=[&1�2, 1], P=60 , Q=62 , +=1, &=2. Let
f # C[&1�2, 1] be given by

f (x)={4x+2
&1�2(5x&4)

&1�2�x�0
0�x�1

.

Let

rf =
1

1+x2 .

Then & f&rf &=1, and

X0=[0, 1], X+=[0], X&=[1], _(0)=1, _(1)=&1.
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Let :1=:2=1, ;1=1, ;2=1�2. Then

:1 _(0) p(0)+:2_(1) p(1)=0, for all p # 60 ,

:1_(0) rf (0) q(0)+:2_(1) rf (1) q(1)=;1 q(0)&;2q(1), for all q # 62 .

Thus by Theorem 3, rf # PR+, &( f ), and by Lemma 3, rf is a uniqueness
element of R+, & .

Now let

g=(x&x2) rf .

Then g # G*rf , and further

_(0) g(0)=0, _(1) g(1)=0.

Thus by Theorem 2, rf is not strongly unique.

This example shows that strong uniqueness is not necessarily implied by
the existence of a uniqueness element. The next example shows that the
reverse implication is also false.

Example 2. Let X=[&1, 1], P=60 , Q=62 ,

+(x)={1�2x2+1�2x+1
1

&1�x�0
0�x�1

, &=2.

Let

f1(x)={1�2(5x+4)
&1�2(5x&4)

&1�x�0
0�x�1

, rf (x)=
1

1+x2 .

Then & f1&rf&=1, with X0=[&1, 0, 1], X+=[0], X&=[&1, 1], _(&1)=
&1, _(0)=1, _(1)=&1. It is readily seen that rf # PR+, &( f1). Further, since
G*rf is closed, (2.19) is easily verified, and so rf is strongly unique.

Now let

rf*=
1

1�2x2+1�2x+1
,

and define f2(x) by

rf* &1�x�&1�2
f2={2+12x�7 &1�2�x�0.

2&5x�2 0�x�1
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Further, for rf*, f2: X0=[0, 1], X+=[&1, 0], X&=[1]. It is readily verified
that rf* # PR+, &( f2), with &rf*& f2&=1. (In Theorem 3, take l=1, with
y1=0.) In addition, &rf& f2&=1, so that rf # PR+, &( f2). It follows that rf is
not a uniqueness element of R+, & .

3. CONCLUSIONS

We have given various conditions which lead to strong uniqueness of the
constrained rational Chebyshev approximation problem. The relationship
between a uniqueness element and strong uniqueness has been investigated,
and it is shown by examples that these are not equivalent. This is not really
surprising because the property of being a uniqueness element is a global
property (it holds for all f ), while strong uniqueness is a point property
(valid only for a fixed f ).
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